Programmed placement of gold nanoparticles onto a slit-type DNA origami scaffold.
نویسندگان
چکیده
A novel DNA scaffold, called a DNA slit, was designed for the programmed positioning of Au nanoparticles (AuNPs), and various patterns of thiolated DNA slits were constructed. AuNPs were correctly placed at the predesigned positions in the thiolated DNA slits, indicating that the thiolated staples and the slit cavities guide the correct assembly of AuNPs.
منابع مشابه
Assembly of heterogeneous functional nanomaterials on DNA origami scaffolds.
One on each side: gold nanoparticles (AuNPs) and semiconducting quantum dots (QDs) are integrated on a single DNA origami scaffold. Streptavidin-functionalized QDs bind to biotin anchors on one side of the DNA origami, while DNA-coated AuNPs bind through DNA hybridization to single-stranded DNA on the other side of the scaffold. This approach offers a new path toward the organization of complex...
متن کاملDNA-Origami-Aided Lithography for Sub-10 Nanometer Pattern Printing
We report the first DNA-based origami technique that can print addressable patterns on surfaces with sub-10 nm resolution. Specifically, we have used a two-dimensional DNA origami as a template (DNA origami stamp) to transfer DNA with pre-programmed patterns (DNA ink) on gold surfaces. The DNA ink is composed of thiol-modified staple strands incorporated at specific positions of the DNA origami...
متن کاملDielectrophoresis of gold nanoparticles conjugated to DNA origami structures
DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular D...
متن کاملSite-specific immobilization of single-walled carbon nanotubes onto single and one-dimensional DNA origami.
Development of a simple and efficient methodology to control the placement, spacing, and alignment of single-walled carbon nanotubes (SWCNTs) is essential for nanotechnology device application. Building on the growing understanding that the strong π-π interaction between the bases of single-stranded DNA (ssDNA) and CNTs is sufficient not only to drive CNT solubility in water but also to stabili...
متن کاملProgramming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse applications ranging from metamaterials to surface-based biophysical assays. Toward this end, he...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 47 38 شماره
صفحات -
تاریخ انتشار 2011